Against Syntactic Representation of Lexical Decomposition: Agentivity, Aspectual Classes, and the Progressive

Robert Truswell

Utrecht, 10/1/2007

1 Introduction

1.1 The Issue

(1) Hale and Keyser (1993): ‘It is a fundamental assumption of our account that English verbs like shelve, and other location verbs, are “denominal” precisely in sense that they are derived by head movement.’ (pp.56–7)

(2) a.

```
V_1 P                V_2 P
  |                 |     
  DP               V_1     V_2 P
 |                           |     
V_2                     V_1
  |                     |     
P_1                 P_2
       |               |
shelve       t

b. n > (e_1 \rightarrow (e_2 \rightarrow (r \rightarrow s)))
```

(3) Ramchand (2002): ‘the verb phrase contains three different projections and each projection is an instantiation of a (possible) subpart of the whole event’. (p.18)
(5) Common characteristics (explicit or implicit but plausible):

a. (Light and other) verbal heads are predicates over events and ≥ 0 ordinary individuals;

b. The individual-denoting arguments are “distributed”: the different verbal heads introduce their own argument slots;

c. The individual arguments of a particular verbal head are specifiers (and sometimes complements) of it (imposing a maximum of 2, and usually 1, ordinary individuals per subevent);

d. Event arguments are different: they are introduced by heads, but existentially quantified by other verbal heads, T, etc.;

e. Causal (etc.) relations among events correspond to complementation (‘I take particular nodes in the first phase syntax tree to denote relations between properties of events and properties of events, constructing more and more complex event descriptions.’ — Ramchand 2002:21)

f. A causation-like relation (sometimes called “initiation”) may hold between an individual and an event.

1.2 What Could Event Structure Look Like in Syntax?

(6) Theories of narrow syntax (in this case, Chomskyan), privilege certain structural properties or relations, for example:
a. Constituency;
b. Spec–head, head–head, head–complement \textit{(modulo your favourite reductionist theory)};
c. C-command;

\ldots

(7) The central claim of a syntactic theory of decompositional event structure, is that some of these phrase-structural properties / relations correspond fairly directly (e.g. homomorphically) to event-structural properties / relations.

\textbf{Option 1} As above (radically syntactocentric neodavidsonianism);

\textbf{Option 2} Heads introducing subevent variables do not necessarily stand in c-command relations, but (i) the syntactic reflexes of event variables and their coarguments form a constituent; (ii) the maximal constituent denoting a property of an event with all its coarguments specified c-commands anything which that event causes (see (8)) — an underexplored natural alternative sketched by Geis (1973), which removes (5f), and to some extent (5d) and (5c), from (5);

\textbf{Option 3} No uniform mapping of event structure onto phrase structure (the null hypothesis, but also implicit in most accounts with mapping rules — Jackendoff, Grimshaw, LFG,\ldots).

(8)

\begin{center}
\begin{tikzpicture}
 \node (EP) {EP}
 child {node {e_1P}
 child {node {DP}
 child {node {\ldots}}
 child {node {e_1}}
 child {node {DP}
 child {node {\ldots}}
 child {node {e_2P}}
 child {node {DP}
 child {node {\ldots}}
 child {node {DP}}
 child {node {\ldots}}
 }
 }
 }
 }
 child {node {E}
 child {node {DP}
 child {node {\ldots}}
 child {node {e_2}}
 child {node {DP}
 child {node {\ldots}}
 child {node {\ldots}}
 }
 }
 }
\end{tikzpicture}
\end{center}

(9) This talk will argue that:

a. \textbf{Option 1} is untenable, on numerous grounds, once we consider a wider range of argument classes and event-related phenomena;

b. \textbf{Option 2} is slightly more promising, but also, eventually, untenable;

c. Only \textbf{Option 3} has the flexibility we need.

2 \textbf{Single Events from Multiple VPs}

2.1 \textbf{An Unanswered Question}

(10) A core claim of Hale and Keyser (1993), and particularly Ramchand (2002): Multiple events in right-branching cascades can combine to form a single macrovent.

(11) \textbf{But}: What about events in other phrase-structural configurations?
(12) Similar semantic relations:
 a. John [pushed Mary over].
 b. John [knocked Mary over] by [pushing her].

(13) (Said while John is reading a book on landscape gardening, prior to designing his garden:)
 a. John is [designing his garden].
 b. John is [reading a book on landscape gardening] in order to [design his garden].

(14) But similar semantic relations isn’t enough — cf. Fodor’s (1970) discussion of *kill* and *cause to die* — or it could be that event-denoting constituents in the wrong syntactic configurations are doomed to stay separate, by definition.

2.2 Temporal Modifiers

(15) A more formal argument for a single event coming from multiple VPs: Assume VPs denote properties of events. Assume also that Ramchand/H&K light verb structures correspond to single events.

(16) Two other configurations containing multiple VPs: **I**: coordination:
 - John [drove Mary crazy] and [whistled] (OK, it’s not the most natural coordination, the reason will become clear…)

(17) **II**: adjunction (specifically, here adjunction of a bare participial VP, interpreted as denoting the event which causes the result state encoded in the matrix VP):
 - John [drove Mary crazy] [whistling].

(18) Now, add a temporal modifier to both:
 a. John drove Mary crazy and whistled on Thursday.
 b. John drove Mary crazy whistling on Thursday.

(19) (18a) is ambiguous:
 a. John [[drove Mary crazy and whistled] on Thursday].
 b. John [drove Mary crazy] and [[whistled] on Thursday].

(20) (18b) is unambiguous:
 a. John [[[drove Mary crazy] whistling] on Thursday].
b. *John [drove Mary crazy] [[whistling] on Thursday].

(21) a. Davidson (1967): action sentences have a covert event argument. Modifiers such as on Thursday are further predicates of that event variable.

b. Higginbotham, Parsons, Kratzer, etc.: VPs denote properties of events, T or some higher node existentially quantifies the event variable.

c. But then we only expect reading (19a) for (19): we conjoin VPs (denoting properties of events) and identify the \(\lambda \)-abstracted event variables, yielding a constituent which also denotes a property of a single event. Whether the PP-modification is internal or external to coordination, all the event variables are ultimately identified, so (19) should assert that both the driving Mary crazy and the whistling take place on Thursday.

d. Moral of the story: we must be able to form some higher-order structure built from properties of events, whether tuples (Winter’s 1995 syncategorematic theory of conjunction would slot in nicely here), sets (which could lead to an implementation of Kamp’s 1979 et seq. event-based theory of time and tense), Link sums, etc. On Thursday must be able to modify either the individual conjuncts (giving reading (19b)) or the whole conjunction (giving reading (19a)).

e. So if we wish to keep Davidson’s notion that temporal modifiers are properties of events, then it becomes a nontrivial fact that two conjoined VPs can (19a), but don’t have to (19b), denote properties of a single event.

f. And because of the cases where they do, we can give an affirmative answer to (11). If multiple VPs never formed single events, (19) should be unambiguous.

(22) a. (18b) is even clearer: the temporal modifier must apply to both VPs, so the multiple VPs must correspond to a single event.

b. Possible semantic representation (though I won’t go into how to derive it compositionally here):
\[
\exists E, e_1, e_2. (e_1 = \text{whistle}(j) \land e_2 = \text{crazy}(m) \land E = \langle e_1, e_2 \rangle \land \text{On}(E, \text{Thursday}))
\]

3 Agentivity and Event Structure

3.1 Wolff

(23) Wolff (2003): Three experiments: I: Direct causation vs. indirect causation. Three marbles in a row. Marble 1 rolls into marble 2, knocking it into marble 3. Subjects report that there is one event occurring involved in the interaction of marbles 1 and 2, but two events involved in the interaction of marbles 1 and 3. They also choose lexical and periphrastic causatives appropriately:

1This is not completely out, but requires a comma between matrix VP and adjunct, preferably an extra tag like like that on the end, possibly a habitual reading of the adjunct event, etc. — all indications that Something Extra is going on, which I won’t investigate here. Similar comments apply to non-causal readings of the relation between matrix VP and adjunct.
a. The blue marble moved the red marble.

b. The blue marble made the red marble move.

(24) **II: Animate vs. inanimate subjects.** Replace the first marble with a human hand, which pushes a marble into another marble. Suddenly, subjects see only one event involving the hand and the second marble.

(25) **III: Deliberate vs. unintended causation**

a.
b.

Subjects see one event when the event is intentional ((25a): the woman is acting in order to make the smoke disperse), but two events when the event is unintentional ((25b): the woman does not act to make the smoke disperse, although the smoke disperses as a consequence of her actions).

(26) Take-home message: agentive subjects can give bigger events.

3.2 Enablement and Extended Events

(27) Wolff’s definition of the role of enablement:

a. *No-intervening-cause criterion*
 ‘Direct causation\(^2\) is present between the causer and the final causee in a causal chain (1) if there are no intermediate entities at the same level of granularity as either the initial causer or final causee, or (2) if any intermediate entities that are present can be construed as an enabling condition rather than an intermediate causer.’ (Wolff 2003:4–5)

b. *No-intervening-cause hypothesis*
 ‘The linguistic coding of causal chains in English (and possibly in other languages) is

\(^2\)In accordance with the norms in the literature, I use *direct causation* in another sense throughout this handout, where I reserve it for relations between its cause and its immediate effects, enablement or no enablement. So for me, direct causation corresponds only to (28a) in the diagrams below, whereas Wolff also considers (28b) as direct causation. This is only terminology but best to be clear about it.
determined by the concept of direct causation as defined by the no-intervening-cause criterion. Further, the way in which English speakers (and possibly speakers from other languages) individuate events is also determined by the concept of direct causation as defined by the no-intervening-cause criterion. In terms of linguistic coding, the no-intervening-cause hypothesis holds that in the absence of an intervening cause, a causal chain can be described by a single-clause sentence. In terms of events, the hypothesis holds that when there is no intervening cause, a causal chain can be construed as a single event.’ (Wolff 2003:7)

(28) Or in other words:

a. This can be construed as a single event:

```
A ——— CAUSE ——— B
```

b. And so can this (I will call such configurations extended events):

```
A ——— CAUSE ——— B ——— CAUSE ——— C
      ^             |             |
       ENABLE      ENABLE      
```

c. But this can’t:

```
A ——— CAUSE ——— B ——— CAUSE ——— C
      ^             |             |
       ENABLE      ENABLE      
```

(29) Crucially, enablement relations seem to need an agent subject of the original event, who can see the contingent relations (in the sense of Moens and Steedman 1988, i.e. causation and planning-related enablement) between events, and can form plans by forward-chaining immediate relations between links in causal chains, as described by Steedman (2002).

(30) This gives a link between agentive subjects and the maximum size of an individual event: in the absence of an agentive subject, contingent relations among subevents of an individual event must be direct, but an agentive subject allows us to construe indirect contingent relations (or chains of direct contingent relations) as part of the same event.

(31) John is walking to the outdoor pursuits shop. A friend asks him where he is going. John replies ‘I’m going climbing’.

a. The walk to the shop;

b. The purchase of equipment;

c. The climb.
John’s actions are exactly the same as in (31) (walking, outdoor pursuits shop, equipment-buying, climbing) but he didn’t mean to perform any of those actions. He was on his way to the chip shop next door, but stumbled into the outdoor pursuits shop by mistake. Once he was there, he figured he may as well make the most of it and buy some energy bars, but somehow he found himself buying crampons instead of energy bars. By this time, he was feeling quite puzzled and more than a little foolish, but he decided he should at least make sure the crampons have a good home, so he would give them to his friend, who lives at the bottom of a rockface and likes climbing. But when he got there, some unknown force came over him, and rather than ringing his friend’s doorbell, before he knew it he was wearing the crampons himself, dangling from a rope halfway up the rockface.

John could not have said I’m going climbing when he was on the way to the chip shop.

3.3 Aspectual Classes and the Progressive

(33) Vendler (1957), Dowty (1979), etc.: four aspectual classes:

a. *For how long* questions are only felicitous with activities and states:

 i. #For how long did he run a mile (draw a circle, build a house, . . .)?
 ii. For how long did he run (write, work, . . .)?
 iii. #For how long did you spot the plane (appear, blink, . . .)?
 iv. For how long did you know the answer (love me, understand antisymmetry, . . .)?

b. Progressives are only felicitous with activities and accomplishments:

 i. I am running a mile (drawing a circle, building a house, . . .).
 ii. I am running (writing, working, . . .).
 iii. *I am spotting the plane (appearing, blinking, . . .).
 iv. *I am knowing the answer (loving you, understanding antisymmetry, . . .).

(34) Mourelatos (1978), Verkuyl (1989), etc.: three aspectual classes:

a. Achievements often can form the progressive:

 i. I’m reaching the summit as we speak.
 ii. John is winning the race.
 iii. He’s arriving any minute now.

b. Verkuyl: the effects noted by Vendler are due to interference from agentivity, which he takes to be independent of event structure.

(35) **The third way: I**: four aspectual classes...

3Dowty had many more than four. I include him with Vendler because (a) he kept Vendler’s taxonomy and added more subtle subdivisions; (b) he distinguishes accomplishments and achievements (only accomplishments include CAUSE), which is what I’m really interested in.
II: . . . but accomplishments and achievements are in the same class . . .

- This explains why both can form progressives.

III: . . . unlike points, which really don’t form progressives.

a. i. * John is noticing the carnage.
 ii. * John is recognising his long-lost brother.
 iii. $\&$ John is hiccupping.\(^4\)
 iv. $\&$ John is blinking.
 v. $\&$ John is hopping.

b. Our four aspectual class are then states, activities, points and culminated processes (accomplishments and achievements).

c. The Maximal Core Event:

\[
\begin{array}{c}
\text{CULMINATION} \\
\text{PROCESS}
\end{array}
\]

 i. Culminated processes: PROCESS + CULMINATION;
 ii. Activities: PROCESS;
 iii. Points: CULMINATION;
 iv. States: \emptyset.

d. To form the progressive, you need a process. To form a for how long question, you need to not have a culmination.

IV: Accomplishments and achievements are distinguished by agentivity rather than presence or absence of particular subevents . . .

a. Many typical accomplishments (build a house, draw a picture, . . .) are unambiguously agentive.

b. Many typical achievements (reach the summit, die, win the race, . . .) are apparently nonagentive:

 i. ?? John deliberately reached the summit.
 ii. ?? John died on purpose.
 iii. ?? John intentionally won the race.

\(^4\)Acceptable in excruciatingly slow motion or if iterated.
c. We will see below that agentivity is a good predictor of felicity of the progressive in particular contexts for more complex cases.

d. How to integrate Wolff’s diagrams (28) with the maximal core event (37c): the event at the end of a causal chain in (28) is the culmination of a maximal core event. The rest of the causal chain is the process. So even when you are embarking on the first step of a complex plan to reach a remote goal, this is part of the same event.

e.

![Diagram]

(39) VI:…which means that we expect both traditional accomplishments and traditional achievements to allow the progressive (except for the points, which Vendler would also classify as achievements), but for this to be formed from extended events in the agentive cases, and only from core events in the others. So progressives of agentive culminated processes can describe activities which are further from the intended goal than their nonagentive counterparts.

a. A man setting off up Mt. Everest can be described as climbing Mt. Everest but not reaching the summit of Mt. Everest.

b. A man flying on a London–Amsterdam flight can be described as travelling to Utrecht but not arriving at Utrecht.

(40) VI: Attributing the difference to agentivity means that we expect the difference to be partially non-lexical, which is accurate.

a. It had been a disastrous picnic, one which was really best forgotten. Tom clearly agreed with this sentiment, for he had picked up a nearby can of petrol and was now approaching the leftovers with a look of steely intent on his face. ‘What are you doing?’, cried Bill. ‘I’m destroying what’s left of the food’, said Tom.

b. It had been a gorgeous picnic, but with one drawback. Far too much alcohol had been involved. Most of the picnickers were now sleeping it off in the shade, with three exceptions, Tom, Dick and Harry. Tom was far from sober, and was amusing himself with a wayward, uncoordinated dance that was bringing him inexorably closer to the leftovers. Harry, who had stayed sober, surveyed the scene and frowned. ‘What’s wrong?’ asked Dick. # ‘Tom is destroying what’s left of the food’, said Harry.

c. It had been a gorgeous picnic, but with one drawback. Far too much alcohol had been involved. Most of the picnickers were now sleeping it off in the shade, with three exceptions, Tom, Dick and Harry. Tom was far from sober, and was amusing himself with a wayward, uncoordinated dance that had landed him in the middle of the
leftovers, which he was obliviously kicking about and trampling into the earth. Harry, who had stayed sober, surveyed the scene and frowned. ‘What’s wrong?’ asked Dick. ‘Tom is destroying what’s left of the food’, said Harry.

d. It had been a gorgeous picnic on the beach, but now it was time to leave. The picnickers had arrived at low tide, and placed their blanket near the shore, but the tide had turned, and now each wave came a little closer to the leftovers. Tom surveyed the scene and frowned. ‘What’s wrong?’ asked Bill. ‘The sea is destroying what’s left of the food’, said Tom.

e. It had been a gorgeous picnic on the beach, but now it was time to beat a hasty retreat. The picnickers had arrived at low tide, and placed their blanket near the shore, but the tide was coming in with astonishing speed, and was now lapping around the leftovers, which the picnickers hadn’t had a chance to salvage. Tom surveyed the scene and frowned. ‘What’s wrong?’ asked Bill. ‘The sea is destroying what’s left of the food’, said Tom.

4 Event Structure and Syntax

4.1 Where are Contingent Relations in the Syntax?

(41) a. I am designing a garden (said when reading a garden design manual):

\[\text{Read} \xrightarrow{\text{CAUSE}} \ldots \xrightarrow{\text{CAUSE}} \ldots \text{Design} \]

\[\text{Enable} \quad \text{Enable} \quad \text{Enable} \]

b. John is working hard in order to pass his exam.

\[\text{Work} \xrightarrow{\text{CAUSE}} \ldots \xrightarrow{\text{CAUSE}} \ldots \text{Pass} \]

\[\text{Enable} \quad \text{Enable} \quad \text{Enable} \]

c. Given the evidence in section 2 that multiple VPs can jointly denote properties of a single event, if (41a) asserts the existence of a single event, then we have no reason to think anything else of (41b).

(42) a. If contingent relations among events correspond to complementation or to head–head relations, this means that in order clauses, which represent the goal at the end of an extended event, should be very low in the structure, c-commanded by the direct object (an argument of the initial subevent of the extended event).\(^5\)

\(^5\)There can’t be an a priori argument against such a low adjunct, given the strong evidence that resultatives occupy such a position.
b. VP
 Subj
 V
 VP
 Obj
 V
 XP
 in order to...

(43) But it doesn’t: we can tell from condition A that the object doesn’t c-command into the in order clause.

a. John hugged Mary [in order to make himself happier].

b. * John hugged Mary [in order to make herself happier].

(44) Conclusion: contingent relations cannot always be represented syntactically as in H&K, etc. But the weaker conceivable claim, that they are sometimes represented in that way is pretty uninteresting, really.

4.2 Implicit Subevents, or What Causes What?

(45) H&K etc., at least implicitly: event variables are introduced, along with other arguments, by heads, but differ in that they are never saturated by an event-denoting specifier/complement.

(46) So what about event-denoting subjects? A challenge to H&K’s project of relating the lexical categories to major conceptual categories (V: event; A: state; P: relation; N: (thing?))

(47) Lewis (1973), Geis (1973), etc.: causation is a relation holding between two events, not a relation between an ordinary individual and an event. In the sentence John deafened Mary, there is nothing internal to the object John which caused Mary’s deafness. It is only by doing something that John can cause Mary to go deaf.

(48) So when we have an individual-denoting subject of a causal predicate such as John deafened Mary, that subject is an argument of an implicit causing event, which the true argument of the causal predicate.

(49) Sometimes the causing event is explicit:

a. John deafened Mary.

b. John whistling deafened Mary.

(50) So where is this represented in the syntax?

(51) None of the options work: I: whistling could be the head of one of the VP-shells. If whistling is absent, we have a null light verb in its place.
a. i. vP
 John
 whistling
 VP
 deafened
 Mary

ii. vP
 John
 v
 VP
 deafened
 Mary

b. This gets constituency facts wrong:

 i. [John whistling] and [Bill screaming] deafened Mary.
 ii. It was John whistling that deafened Mary.

(52) **II:** the subject of *deafen Mary* could be a constituent consisting of *John* and a VP, sometimes overt, sometimes null.

a. i. vP
 XP
 John whistling
 v
 VP
 deafened
 Mary

ii. vP
 XP
 John Pro-VP
 v
 VP
 deafened
 Mary

b. This gets condition A facts wrong: *John* only c-commands the object position when *whistling* is not present:

 i. John deafened himself.

(53) If we want to keep a direct representation of event structure in the syntax, this leaves only two possibilities:
a. Assume that everything (e.g. John) denotes a property of events, so John alone can be the right sort of eventive constituent to be the argument of a causal predicate (cf. comments in (46). I won’t discuss this possibility here, as it seems too far-fetched to claim that it is merely an accident of morphology that John (a property of events) does not occur in tensed/untensed forms, like laugh (a property of events) does, etc.;

b. Go for something closer to Option 2 in the introduction: a weaker claim that relations among events do not reduce to relations among heads, but that nonetheless, each event, with its coarguments, is represented by a single constituent — e.g. a semantic condition that says that only events cause events, and a mapping rule which says that if the syntax directly gives you x CAUSE... , enrich this to $\exists P. P(x)$ CAUSE...

4.3 Raising, Control, and Bare Causative Adjuncts

(54) None of the above criticisms apply to the weaker possibility (Option 2 in the introduction) that events and their coarguments are represented by constituents, with no specific claim about the internal structure of these constituents:

a. The constituency facts which scuppered (51) can be captured as Option 2 would require both [John] and [John whistling] to be a constituent.

b. The c-command facts which ruined (52) are no problem as Option 2 would allow [John] as the subject of a causative predicate in the syntax, with mapping rules as in (53b) ensuring an eventive denotation in the semantics.

(55) But problems arise for this approach from the class of bare causal adjuncts:

a. John drove Mary crazy whistling.

b. John cut himself carving the turkey.

(56) The matrix subject is interpreted as an argument of the adjunct, and not the matrix, predicate.

a. John drove Mary crazy whistling.

b. John whistling drove Mary crazy.

This is compatible with Option 2 if such structures are actually raising constructions, with the matrix subject raising from inside the adjunct, giving the adjunct as a single constituent denoting the John-whistling event.
(57) But the diagnostics unequivocally show that such structures are not raising.

(58) **Instrumental Phrases:**

a. A-movement constructions do not allow instrumental phrases.

i. **Raising verbs:** *John [seemed to be working] with a shovel* and *Bill did so with a laptop.*

ii. **Passives:** *John [was attacked] with an offensive banner.* (*if John has the banner, OK if the implicit agent has the banner)*

iii. **Unaccusatives:** *John arrived with a GPS system.*

b. Environments with typical external arguments allow them.

i. **Accomplishments:** *John built a house with bricks and mortar.*

ii. **Activities:** *John walks around with a walking stick.*

iii. **Subject control:** *John [tried to cross the Channel] in a canoe* and *[Bill did] in a pedalo.*

c. And so do the cases with bare causative adjuncts.

i. *John cut himself with a rusty knife carving the turkey.*

ii. *John destroyed the decor with a heavy rock playing a bizarre game of indoor volleyball.*

(59) **Object control complements:**

a. A-movement constructions generally don’t make good object control complements.

i. **Raising verbs:** *Bill persuaded John to seem to be working.*

ii. **Passives:** *Bill persuaded John to be attacked.*

iii. **Unaccusatives:** *Bill persuaded John to arrive.*

6We need to qualify this because of examples like *Bill persuaded John to arrive on time.* I believe that *persuade* actually relates semantically to *on time* in this case: the arrival is presupposed and the actual reading is along the lines: *Given that he was going to arrive anyway, Bill persuaded John to arrive on time.*
b. Constructions with typical external arguments are fine.

i. **Accomplishments:** Bill persuaded John to build a house.

ii. **Activities:** Bill persuaded John to walk endlessly up and down Oxford Street.

iii. **Subject control:** Bill persuaded John to try to cross the Channel.

c. And so do the cases with bare causative adjuncts.

i. Christmas dinner was always dull in John’s house, and Bill thought it should be livened up with a bit of drama. So Bill persuaded John to cut himself carving the turkey.

ii. Bill and John were sick of Mary’s calm demeanour. The only thing which REALLY PISSED HER OFF was whistling. Luckily, John is an expert whistler. So Bill persuaded John to drive Mary crazy whistling.

(60) **Expletive Subjects:**

a. A-movement constructions often allow expletive subjects

i. **Raising verbs:** It seemed that John was working.

ii. **Unaccusatives:** There arrived a man from the frozen North.

b. Constructions with typical external arguments don’t.

i. **Activities:** *There smiled a man from the frozen North.*

ii. **Subject control:** *Bill persuaded there to be someone to meet him in Moscow.*

c. And neither do the cases with bare causative adjuncts.

i. *There caused a commotion sitting on the throne an angry dissident.*

ii. *It caused a commotion seeming that a dissident burnt a union jack.*

(61) Take-home message (a fairly unsurprising one): subjects of bare causative adjunct constructions behave like genuine subjects (external arguments in the cases considered here) of the matrix VP, rather than like raising verbs. This is in contrast with the interpretive similarity highlighted in (56), which appears to show that, thematically, the subject is an argument of the adjunct predicate.\(^7\) This conflict is incompatible with Option 2, the hypothesis that a subevent and its coarguments form a constituent in the syntax.

\(^7\)This does fairly nasty things to orthodox \(\theta\)-theory, and to our definition of “external argument” in particular. One way out would be the sort of composite \(\theta\)-roles explored by Jacqueline Guéron in recent work, but I don’t have a firm proposal in this regard, as I don’t have any firm intuitions concerning potential subtle interpretive differences between the examples in (56).
5 Conclusion

(62) If we allow our events to look like this: . . .

a. Multiple VPs sometimes forming a property of a single event;

b. Acknowledgement of the interaction of agentivity with the boundaries of events;

c. No particularly transparent mapping from phrase structure into event structure;

d. Coarguments of event variables distributed throughout the syntax as required by principles unrelated to event structure.

(63) . . . Then we get all these benefits: . . .

a. A new (hopefully improved) account of the vagaries of the English progressive;

b. A fresh take on some recalcitrant problems concerning the taxonomy of aspectual classes;

c. Simple, commonsense solutions to core syntactic problems which cause problems elsewhere (the condition A, constituency and raising / control facts discussed above).

(64) . . . But our events can’t also look like this:

a. NO privileged role for analogues of core phrase structure relations in event structure;

b. NO transparent mapping between syntactic units (constituents) and semantic units (events);

c. NO single syntactic reflex of the semantically relevant relations among subevents.

References

